Freelancer标志如何运作 浏览工作 登录 注册 发布项目
Find Jobs
Hire Freelancers
Get Ideas
About
Resources
Your complete guide to hiring a programmer What type of software should you develop?

The top machine learning skills you need

Machine learning is exploding in popularity so it's important to understand how this technology can be applied to your business. We've broken it down.
2019年6月28日 • 阅读需6分钟
由Adam S.于2020年2月7日进行更新
封面照片

If you're a programmer who's decided to specialize in machine learning you've made a very wise choice.

Machine learning programmers are growing in demand and that trend is not expected to change, since data just keeps getting bigger and bigger.
If you want to keep yourself as employable as possible it's imperative for you to master the most sought-after machine learning skills. But before we dive into these algorithms, here’s a bit of background knowledge:
We have reached a stage in our technological development where computers no longer require human input in order for them to know which tasks need to be executed. They can now think for themselves.
Yes, you read that correctly. Computers can now write their own programs.
While this doesn’t mean you should worry about your computer autonomously compiling your recent search history into a catchy pop song, this does mean that a new exciting world of data analysis has dawned on us.
Welcome to the wonderful world of machine learning.

Featured Work in Programming

Portfolio item image
Bitrix24 Installation
by d1mf13
Portfolio item image
WPF Hybrid App for Desktop & Tablet
by amusto
Portfolio item image
Delphi Application to Consume SOAP
by qprotex
Portfolio item image
Trade Analysis Tool
by amusto

What is machine learning?

Machine learning, in its most simplistic form, is the language that teaches computers how to learn.
This field of computer science was pioneered by engineers who figured out how to program a computer to recognize different sets of patterns. It has since then evolved into a programming language that can autonomously alter its own program depending on the type of data it's exposed to.
Ever notice those oddly relevant movie recommendations in Netflix?
That’s machine learning.
Traffic predictions in your navigation app?
Yep, machine learning.
Weird warm smell on the bus?
Nope, not machine learning. Definitely not machine learning.

Why is machine learning important?

Machine learning is important because data is important.
Hidden within the deep crevices of data are the answers to the important questions big businesses are asking.
Questions like:
Why do customers do what they do?
And:
What could be done to increase sales?
In order to extract the right answers to these questions, effective models need to be created to illustrate them.
Big data is very dynamic and always evolving. You therefore need machine learning that is capable of moulding to such ever-changing data.
 

How does machine learning relate to artificial intelligence?

Contrary to the opinions of many, machine learning and artificial intelligence are not the same thing. Machine learning is an application of artificial intelligence.
Think of artificial intelligence as a “brain,” and machine learning algorithms as the neurons of this brain.
With the stage set, let’s now dive into the top machine learning skills your employer will love! 

The top must-know machine learning algorithms

To illustrate the application of machine learning and its most useful algorithms, in this post we will run through the solution to the following case study:
You have had a history of rocky relationships and you want to anticipate when your current spouse is likely to break up with you. In this case we will need to implement a method of machine learning known as “Supervised Learning.”
Supervised learning algorithms can predict future actions based on historical data.
To tackle this problem you’d start by compiling all of the data points pertaining to all of your previous successful relationships (we’re being generous here and assuming you’ve had at least some success):
This data could contain details such as:
Behavioral patterns Things that were said. Appendages that were not ridiculed
All of this data would then be compiled into an array and labelled as “correct” or “things are going well, Mom.”
You would then compare all new data against this ultimate standard in order to track the success of your current relationship.
A set of machine learning algorithms will recognize all of the worrisome patterns within the new data set that could lead to your relationship failing miserably.
These algorithms are super useful to have in your machine learning toolbox, let’s go over each of them:

Classification

Classification is the method of classifying data.
Data can be classified into different categories depending on the outcome that is being predicted.
Classifications can either be:
Binary. Yes or no Multi-class. Car make and/or model

Freelance Programming Experts

用户头像
的国旗 SERVEROK SOFTWARE @Netfreehost
40 USD / hour
5.0 (2164条评论) PHP Python Script Install Windows Desktop System Admin
Visit profile
用户头像
的国旗 Paris Pallas @ParisPallas
38 USD / hour
5.0 (718条评论) Proofreading Excel SQL Powerpoint Oracle
Visit profile
用户头像
的国旗 Armando M. @amusto
70 USD / hour
5.0 (150条评论) ASP C Programming Java JavaScript XML
Visit profile
用户头像
的国旗 Riowebs System @Weborchid
25 USD / hour
5.0 (26条评论) PHP JavaScript .NET Website Design Graphic Design
Visit profile
In our scenario, not laughing at a joke you’ve made would be classified as “not wife material.”
Here are the 3 most popular methods of classifying data:
1. Decision Trees
A decision tree uses a sequence of rules to split data using a tree-like model.
Data is constantly fed into the tree and split until the results are as “pure”as possible, or most likely to be free of errors.
 
alt
 
Figure 2: Decision Tree - medium.com
2. K - Nearest Neighbour (KNN)
KNN is a very archaic method of cleaning up distributed data.
This algorithm classifies data based on its relationship to neighbouring data.
For example, if the majority data points located within a given radius (K) are closely related to one another, that data set can then be classified under a given label.
 
 
alt
 
Figure 3: analyticsvidhya.com  
3. Random Forest
Random forest algorithms are a very popular classifier, they are highly accurate and super fast!
Random forests use the average outputs of multiple decision trees in order to create a highly accurate classification.
Random forest algorithms LOVE big sets of data.
 
alt
 
Figure 4: medium.com
The supervised machine learning method of classification is used in tandem with other machine learning algorithms in order to create accurate predictions.
Some of the primary ones are outlined below:

Regression

Regression can be thought of as a one dimensional estimate to multi-dimensional data:
There are different regression models you can implement depending on the complexity of the data spread.
alt
Figure 5: Polynomial Regression - medium.com
 
alt
Figure 6: Linear regression - medium.com
 
alt
Figure 7: Support vector regression - medium.com

Prediction explanations

Regression algorithms, tree based algorithms and neural networks can all be used to formulate a prediction of the most likely outcome.
When making a prediction, in order to satisfy your employer, you need to also provide an explanation of that prediction.
Prediction explanations outline the key variables that dictated the outcome of a given scenario.
In our scenario, a prediction explanation would provide the much needed “closure” to our failed relationship.
The most effective prediction explanation library to use for you machine learning algorithms is SHAP (SHapley Additive exPlanations). SHAP creates beautiful visualizations that clearly outline the relevance of key features to a certain prediction.
Predictions can be illustrated via different visualization models.
Here is a list of some of the most important ones to be aware of:
Summary plot Dependance plot Model explainer Prediction explainer
Here is an example of a summary plot pertaining to the market value of a given home.
 
alt
 
 
Figure 8: Summary Plot - towardsdatascience.com
The list of acronyms on the left represent different factors that affect the price of a home. The factor at the very top (LSTAT) refers to the lower status of a population. The factor directly below that (RM) represents the number of rooms of a given household. The bar on the right represents the relevance of each feature to the overall outcome (price of a home).
We can see that the top two factors that affect the price of a given home in this data set are LSTAT (Lower status of the population) and RM (Number of rooms).
With some color association we can see that the more negative the LSAT value and the more positive the RM value the higher the likelihood of a house to have a high valuation.
Which makes sense, really. If you have a residential area with less “lower status” individuals and more homes with a high number of rooms, there is a high chance of a home in this area having a high market value.
In our scenario, a summary plot would be the most relevant prediction explanation model to use.
An extremely positive SHAP value for the feature “body odor” might help you finally pinpoint the reason for all of your failed relationships and therefore increase the odds of your next one being a success.

Conclusion

So there you have it, if you master supervised machine learning and all of its subset algorithms, not only will employers find you irresistible, but you will also avoid another soul-crushing break-up by preemptively ending a fruitless relationship.

[[related_portfolios=[tag="Programming"]]] 
告诉我们你需要做什么
输入您的项目名称
开始项目
相关故事
文章缩略图
What type of software should you develop?
阅读需要5分钟
文章缩略图
Your complete guide to hiring a programmer
阅读需要13分钟
文章缩略图
10 tips for SaaS success
阅读需要7分钟
文章缩略图
10 tips for developing your first game
阅读需要6分钟
文章缩略图
How to build a game for console or PC
阅读需要6分钟

与我们的Technical Co-Pilots进行沟通来获得项目帮助

立即获得帮助

专为您推荐的文章

文章缩略图 The ultimate guide to hiring a web developer in 2021
If you want to stay competitive in 2021, you need a high quality website. Learn how to hire the best possible web developer for your business fast.
11 min read
文章缩略图 Web development: Front end vs back end
Want to get into web development but don't know whether to be a front end or back end dev? We'll teach all of the skills required for both jobs.
8 min read
文章缩略图 Scaling your startup for the future
Scaling your startup is a delicate balancing act. Scale too quickly and your funding is depleted. Scale too late you've missed your opportunity.
23 min read
文章缩略图 How to come up with a great business idea
Struggling to come up with the best idea? Our exhaustive guide runs through the idea generation process to help you tap into your inner Steve Jobs.
10 min read
已注册用户 发布工作总数
Freelancer ® is a registered Trademark of Freelancer Technology Pty Limited (ACN 142 189 759)
Copyright © 2023 Freelancer Technology Pty Limited (ACN 142 189 759)
加载预览
授予地理位置权限。
您的登录会话已过期而且您已经登出,请再次登录。